Schattenblick → INFOPOOL → NATURWISSENSCHAFTEN → BIOLOGIE


FORSCHUNG/1003: Individualismus bei Bakterien - Eine Strategie zum Überleben von schwierigen Zeiten (idw)


Max-Planck-Institut für marine Mikrobiologie - 09.05.2016

Individualismus bei Bakterien: Eine Strategie zum Überleben von schwierigen Zeiten


Bakterium ist nicht gleich Bakterium - selbst wenn sie genetisch genau gleich sind. Eine neue Studie zeigt, unter welchen Bedingungen bei Bakterien Individualisten entstehen und wie diese dann das Wachstum der ganzen Gruppe in schwierigen Zeiten aufrechterhalten.


Egal ob Mensch oder Bakterium - unsere Umweltbedingungen bestimmen, wie wir uns entwickeln können. Dabei gibt es zwei grundlegende Probleme: Erstens: Welche Ressourcen stehen mir zur VerfÜgung, um zu überleben und zu wachsen? Und zweitens: Was mache ich, wenn sich die Umweltbedingungen unerwartet verändern?

Eine Forschergruppe des Max-Planck-Instituts für Marine Mikrobiologie in Bremen, der Eawag, der ETH Zürich und der EPFL Lausanne hat nun herausgefunden, dass Bakterienpopulationen besonders viele Individualisten hervorbringen, wenn es nur begrenzt Nährstoffe gibt. Das bedeutet, dass diese Bakterienpopulationen sich nicht nur - wie meist angenommen - im Nachhinein an veränderte Umweltbedingungen anpassen. Die Individualisten können auch schon im Vorhinein auf solche Veränderungen vorbereitet sein.


Mangel befördert Vielfalt, Vielfalt macht flexibel

In einer aktuellen Veröffentlichung in der Zeitschrift Nature Microbiology zeigen die Forscher um Frank Schreiber, dass einzelne Zellen in Bakteriengruppen, die unter Nährstoffmangel leiden, sehr unterschiedlich reagieren können. Obwohl alle Zellen einer solchen Gruppe genetisch genau gleich sind, gehen sie ganz unterschiedlich mit den Nährstoffen in ihrer Umgebung um. Konkret: Bakterien der Art Klebsiella oxytoca nehmen bevorzugt Stickstoff in Form von Ammonium (NH4+) auf, denn das kostet vergleichsweise wenig Energie. Wenn nicht genügend Ammonium für alle vorhanden ist, beziehen einige Zellen der Gruppe ihren Stickstoff durch Stickstofffixierung aus elementarem Stickstoff (N2), obwohl das deutlich aufwändiger ist. Geht nun das Ammonium plötzlich ganz aus, sind diese Zellen auf den Mangel gut vorbereitet. Auch wenn einzelne Zellen leiden, kann die Gruppe als Ganze weiterwachsen. "Obwohl alle Individuen der Gruppe genetisch identisch sind und den gleichen Umweltbedingungen ausgesetzt waren, sind die einzelnen Zellen verschieden", so Schreiber.


Modernste Methoden erlauben detaillierte Einblicke

Diese bemerkenswerten Unterschiede zwischen den Bakterien konnten Schreiber und seine Kollegen nur entlarven, indem sie den einzelnen Zellen ganz nah auf den Pelz rückten. "Wir mussten die Nahrungsaufnahme einzelner Bakterienzellen messen - obwohl die nur 2 µm groß sind", erklärt Schreiber die methodische Herausforderung. "Üblicherweise werden in der Mikrobiologie nur die kollektiven Eigenschaften in Populationen von mehreren Millionen oder gar Milliarden von Zellen zusammen gemessen. Nur durch die enge Zusammenarbeit, die vielfältige Expertise und die technische Ausstattung der beteiligten Forschergruppen war es möglich, so ins Detail zu gehen."


Auch Bakterien sind Individualisten

Die vorliegende Studie belegt, wie wichtig Individualität - bei Bakterien und im Allgemeinen - in einer veränderlichen Umwelt sein kann. Unterschiede zwischen Individuen verleihen der ganzen Gruppe neue Eigenschaften und erlauben ihr so, mit schwierigen Umweltbedingungen umzugehen. "Dies deutet darauf hin, dass biologische Vielfalt nicht nur im Sinn der Artenvielfalt von Tieren und Pflanzen, sondern auch auf dem Niveau einzelner Individuen bedeutsam ist", sagt Schreiber. In einem nächsten Schritt wollen Schreiber und seine Kollegen nun untersuchen, ob solch individuelles Verhalten von einzelnen Bakterienzellen auch in natürlichen Lebensräumen eine wichtige Rolle spielt.


Originalveröffentlichung
Phenotypic heterogeneity driven by nutrient limitation promotes grow th in fluctuating environments.
Frank Schreiber, Sten Littmann, Gaute Lavik, Stéphane Escrig, Anders Meibom, Marcel Kuypers, Martin Ackermann.
Nature Microbiology,
http://doi.org/10.1038/NMICROBIOL.2016.55

Beteiligte Institute:
Max-Planck-Institut für Marine Mikrobiologie, Bremen, Deutschland
École polytechnique fédérale de Lausanne EPFL, Lausanne, Schweiz
ETH Zürich, Schweiz
Eawag, Dübendorf und Kastanienbaum, Schweiz


Weitere Informationen unter:
http://www.mpi-bremen.de

Kontaktdaten zum Absender der Pressemitteilung unter:
http://idw-online.de/de/institution536

*

Quelle:
Informationsdienst Wissenschaft e. V. - idw - Pressemitteilung
Max-Planck-Institut für marine Mikrobiologie,
Dr. Manfred Schloesser, 09.05.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 12. Mai 2016

Zur Tagesausgabe / Zum Seitenanfang